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Abstract

This paper presents a transient dynamic crack analysis for a functionally graded material (FGM) by using a hy-
persingular time-domain boundary integral equation method. The spatial variations of the material parameters of the
FGM are described by an exponential law. A numerical solution procedure is developed for solving the hypersingular
time-domain traction BIE. To avoid the use of time-dependent Green’s functions which are not available for general
FGM, a convolution quadrature formula is adopted for approximating the temporal convolution, while a Galerkin
method is applied for the spatial discretization of the hypersingular time-domain traction BIE. Numerical results for the
transient dynamic stress intensity factors for a finite crack in an infinite and linear elastic FGM subjected to an impact
anti-plane crack-face loading are presented and discussed. The effects of the material gradients of the FGM on the
transient dynamic stress intensity factors and their dynamic overshoot over the corresponding static stress intensity
factors are analyzed.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Functionally graded materials (FGM) received in recent years increasingly growing research interests in
material sciences, applied mechanics and engineering sciences, due to their high performance and improved
mechanical, thermal, corrosion-resistant and wear-resistant properties. The mechanical properties of FGM
are non-homogeneous and changing continuously in position. FGM have no interfaces or interphases
and are hence advantageous over the conventional composites and laminates. FGM can be applied to a
wide range of engineering structures and components such as electronic devices, corrosion-resistant and
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wear-resistant coatings, optical films, thermal barrier coatings and biomaterials. The fracture and fatigue
properties of FGM are important to their mechanical integrity, reliability and durability (Erdogan, 1995;
Miyamoto et al., 1999) in practical engineering applications. Crack analysis of FGM provides a deep in-
sight into the fracture and failure behaviors of FGM, which may aid in the design, optimization and ap-
plications of FGM. The corresponding analytical, numerical and experimental results have direct relevant
applications in material sciences, fracture mechanics, non-destructive material testing, and engineering
constructions.

Due to the non-homogeneous nature of FGM and the arising high mathematical complexities, only few
investigations on transient dynamic responses of cracked FGM have been yet reported in literature. Steady
state crack propagation analysis in FGM has been presented by Atkinson (1975), Atkinson and List (1978),
Li and Weng (2002a), Meguid et al. (2002), Nakagaki et al. (1998), Parameswaran and Shukla (1999), and
Wang and Meguid (1995). Dynamic responses of a crack in FGM under impact loading conditions have
been investigated by Babaei and Lukasiwicz (1998), Li et al. (e.g., Li and Zou, 1999; Li et al., 1999, 2000,
2001a,b; Li and Weng, 2001, 2002b; Li et al., 2002), Marur and Tippur (2000), Nakagaki et al. (1995),
Parameswaran and Shukla (1998), Rousseau and Tippur (2001a,b, 2002), Wang et al. (1998), and Zhang
et al. (2001, 2003). Since analytical methods can be applied successfully only to very few simple dynamic
crack problems in FGM, most of the afore mentioned works used either numerical or experimental
methods. As numerical methods, the singular or the dual integral equation method in conjunction with the
Laplace-transform technique, and the finite element method (FEM) are often used. An alternative method
to the very established and widely applied FEM is the boundary element method (BEM) or boundary
integral equation method (BIEM), which has been proven to be highly accurate and efficient for dynamic
crack analysis of homogeneous and linear elastic materials (e.g., Aliabadi, 2002; Beskos, 1997; Dominguez,
1993; Zhang, 2002). In this paper, transient dynamic analysis of a finite anti-plane crack in a FGM sub-
jected to an impact crack-face loading is presented by a using a time-domain BIEM.

In contrast to the BEM/BIEM for homogeneous and linear elastic materials, the applications of the
BEM/BIEM to FGM are yet very limited, because the corresponding time-domain fundamental solutions
or Green’s functions for general FGM are either not available or mathematically too complex. A time-
domain BIEM is presented and applied by Zhang et al. (2001, 2003) to a finite crack in an infinite FGM
which is subjected to an impact anti-plane crack-face loading. To describe the spatial variations of the
material parameters of the FGM, an exponential law is used where a symmetrical material gradation with
respect to the crack-plane is assumed. In this paper, we extend the method of Zhang et al. (2001, 2003) to a
more general case of FGM by removing the symmetry constraint in the material gradation with respect to
the crack-plane. The initial-boundary value problem is formulated as a hypersingualr time-domain traction
BIE. Since the corresponding time-domain Green’s functions are not available for general FGM, the
convolution quadrature formula of Lubich (1988) is applied for approximating the temporal convolution
of the time-domain BIE. A spatial Galerkin method is adopted for the spatial discretization of the time-
domain BIE. In lieu of the time-domain Green’s functions which are frequently used in the conventional
time-domain BEM/BIEM, the time-domain BIEM presented in this paper requires an explicit expression of
the Laplace-domain Green’s functions only, which can be expressed as Fourier integrals. A series of
Chebyshev polynomials of second kind is applied for approximating the spatial variation of the unknown
crack-opening-displacement (COD). An important advantage of the present time-domain BIEM is that it
requires no special regularization or integration techniques for computing the arising hypersingular
Hadamard finite-part integral. Numerical results are presented and discussed for the following three cases
(see Fig. 1):

e Case I: Material gradient parallel to the crack-plane.
e Case II: Material gradient normal to the crack-plane.
e Case I1I: Material gradients parallel and normal to the crack-plane.
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Fig. 1. Investigated cases—Case I: Material gradient parallel to the crack-plane, Case II: Material gradient normal to the crack-plane
and Case I1I: Material gradients parallel and normal to the crack-plane.

Special attention of the analysis is devoted to the investigation of the effects of the material gradients on
the transient dynamic stress intensity factors and their dynamic overshoot over the corresponding static
stress intensity factors.

2. Problem formulation and time-domain BIE

Let us consider a finite crack of length 2a in an infinite and linear elastic FGM as shown in Fig. 2. The
crack is subjected to an impact anti-plane crack-face loading, and the cracked FGM satisfies the equation
of motion

300 = p(X)ils, (1)
the Hooke’s law

T30 = W(X)tt3 5, 2)
the initial conditions

us(x, 1) =i(x,1) =0, t=0, (3)
and the traction boundary condition on the crack-faces

fi(x1,x0 = 0,1) = 63, (x1, 1) = 6%H (), x € [—a,+al. 4)

In Egs. (1)-(4), f3 represents the traction component, u; denotes the displacement component in the x3-
direction, a3, are the shear stress components, u(x) is the shear modulus, p(x) is the mass density, 69, is the
stress amplitude, H (¢) is the Heaviside function, a comma after a quantity stands for partial derivatives with
respect to spatial variables, superscript dots indicate temporal derivatives of the quantity, and the con-
ventional summation rule over repeated indices is applied.
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Fig. 2. A finite crack of length 24 in an infinite FGM.
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To describe the spatial variations of the shear modulus and the mass density, the following exponential
law has been used in the previous works (Zhang et al., 2001, 2003)

M(X) — #Oe“xl+ﬂ‘x2‘7 p(x) = poe“xl+ﬁ|x2|+5, (5)

which implies a symmetrical material gradient with respect to the crack-plane. Note here that the parameter
0 in Eq. (5) is only a mathematical artifact and does not lead to any gradient effects. In this paper, the
symmetry constraint and the parameter 6 in Eq. (6) are removed. Thus, the shear modulus and the mass
density are described by a general exponential law of the forms

oxy+fxa

u(x) = poe™ e p(x) = ppei e, (6)

where y,, py, @ and f§ are material parameters of the FGM. The exponential law (6) enables us to describe
the spatial variations of the material constants in both unidirectionally and bidirectionally FGM.
The equation of motion (1) can be written in terms of the displacement component u3(x) as

[tz + pus g+ fousp + Pz 0 = piis. (7)
By applying the one-sided Laplace transform

7o) = [ e ®)
to Eq. (7), the equation of motion in the Laplace transformed domain takes the form

Wtz + s+ Utz + pids g = ppis, )

where p is a complex Laplace transform parameter. The boundary and the continuity/discontinuity con-
ditions on the crack-faces |x;| < a and the crack-plane |x;| < oo can be stated as

3(x1,0) = 65,(x1,0), x| <a, (10)
3(x1,0") = 632(x1,07),  |x1] < oo, (11)
03(x1,0") = d3(x1,07),  |xi| > a, (12)
03(x1,01) —d3(x1,07) = Az (),  |x1| < a, (13)

where Aiiz(x;) is the COD in the Laplace transformed domain.
The displacement component #3(x) can be expressed as a Fourier integral of the form

o0 i —m g 0
ity (x) = f;ffl(é)e-f } ool (14)
[ A(@eEEnde, x, <0,
where
1 -1 2 . 2 ) .
b= (BB i &~ (u/mll} =12 (15)

In Eqgs. (14) and (15), f1(¢) and f>(&) are unknown functions to be determined, and the regularity condition
at infinite requires Re(y;) > 0.

By substituting Eq. (14) into Hooke’s law (2) and by using the continuity condition (11), a relation
between f; and f, is obtained as

fzz—?)—l‘ i (16)
72
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Eq. (14) together with Egs. (12), (13) and (16) results in

[ e {0, Wiz 1
Eq. (17) can be inverted as
1 Y2 T e an
O =32 2 [ i an. (18)
Substitution of Eq. (18) into Eq. (16) yields
70 =5z [ e sty an. (19)
2n 4+ J

By inserting Eqgs. (18) and (19) into Eq. (14) a representation formula for the Laplace transform of the
displacement component #3(x) is obtained as

+a

u3(x) = [ 6553 (X, y; p) Az (1) dyy (20)

a

in which the Laplace transform of the dynamic stress Green’s function 65, (X, y; p) is given by

655 (x,y;p) = / P gt ntaon) g xy > g,

2n
T o;yl + 7 (21)
pIe; (X . ) _ __1 7 ei€G1=y) 472 (x2—2) d¢ <
33\ XY p) = )t , X2 <.

Substitution of Eq. (20) into Hooke’s law (2) yields a representation integral for the Laplace transform of
the traction component f5(x)

+a

G = [T i) (22)

a

where the Laplace-domain traction Green’s function ?3% (x,y;p) is given by

P~ X) (™ ) . , i
T§3(x’ y;p) = 'u( ) / ﬂem(h—yl)—"/l(Xz—yz)dé7 X2 > s,

2n Y1+ 72 (23)
~ X o b .. R )
T3(33 (X, y;p) = % / %elg(n—h)ﬂz(m—m) dé, x <.

In the time-domain, the corresponding representation formulae for the displacement and the traction
components can be written as

+a

u3(X,t) = / 02}23(Xa Yy, tv ‘C) * AL{3()/],‘E) dyla X1 g [_aa +a]7 (24)
+a

f3(x7[) :/ T§3(Xay;tvr)*Au3(y17f)dyla X1 g [7a7+a]7 (25)

where an asterisk “*’ denotes Riemann convolution which is defined by

70 = [ ste- o (26)

In Eqgs. (24) and (25), 6$;(X, y;7,7) and T5;(x,y; 7, ) are the corresponding time-domain stress and traction
Green’s functions, and Aus(y, 7) is the time-dependent COD defined by
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Auz(y1,7) = us(y1,0%, 1) —uz3(11,07, 7). (27)

By taking the limit process x — I'! € {y; <|a|,)» = 0"} and using the boundary condition (4), a time-
domain traction BIE is obtained as

+a
/ T35 (X, y;4,7) * Aus(, 7) dyy = a3, (x1,1), X1 € [~a,+a]. (28)
By multiplying both sides of Eq. (28) with u~!(x;,0) a more convenient form for the numerical solution of
the time-domain BIE is obtained as

+a
,u’l(xl,())/ Ty (X, ¥;1,7) * Auz(y1,7) dyy = a5, (x1, )" (x1,0),  x1 € [—a, +a]. (29)
It can be easily shown that the traction BIE (29) has a hypersingularity of the order 1/|x — y|2 asx —y.
Here, the hypersingular integral is regarded as the Hadamard finite-part integral. To solve the hypersin-
gular BIE (29), a spatial Galerkin method is applied, which requires no special integration or regularization
technique for computing the arising hypersingular integral. It should be remarked here that an explicit
expression of the time-domain traction Green’s function 75, (x, ¥;,7) is not needed in the present BIEM

as will be seen in Section 3. In lieu of this, its Laplace transform Tp,(X,y; p) is required, which is given by
Eq. (23).

3. Numerical solution procedure

To solve the hypersingular time-domain BIE (29) and to avoid the use of the time-domain Green’s
functions which are not available for general FGM, the convolution quadrature formula of Lubich (1988)
is applied for approximating the temporal convolution, while a Galerkin method is adopted for the spatial
discretization of the hypersingular time-domain traction BIE. The unknown COD is approximated by the
following Galerkin-ansatz

Aus(y1,1) =1/ a* — ¥ ch VU 1<y1) (30)

where K is the total number of the used terms in the ansatz, ¢;(t) are the unknown time-dependent ex-
pansion coefficients and U;_;(y/a) are the Chebyshev polynomials of second kind. In Eq. (30), the term
\/a* — y? is introduced to describe the local “square-root” behavior of the COD at the crack-tips y; = +a
correctly. Substituting Eq. (30) into Eq. (29), multiplying both sides by \/a> — x3U;_(x; /a) and integrating
them with respect to x; from —a to +a, the following time-domain Galerkin-BIE is obtained

/ \/a —x2U11 w(x, 0 / \ @ = U 1( ) 323 (Y1013 4,7) i (7) dyr diy
x
:/ 05, (X1, ) l(xl,O)\/az—fo,,|<;l>dx1, I=1,2,...,K. (31)

The application of the convolution quadrature formula of Lubich (1988)

1) = /0 (t — Dh(z)dr = f(nA) = Zw,, (ADR(iAD) (32)

K
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to Eq. (31) results in a system of linear algebraic equations for the expansion coefficients as

ZZA lef =fr, n=0,1,2,....N, (33)

where the time variable ¢ is divided into N equal time-steps A¢. The time-domain system matrix and the
right-hand side of Eq. (33) are given by

o M1

AZ} _ ZAkl(pm 72mnm/M (34)

+a . B X
"= (71)1/_ 03 (e mAO (x1,0)y /@ =3 Up (2 )dn (35)

a

in which (Lubich, 1988)

(1-2¢, /J, ¢, = remM, (36)

MN

P =0(C,) /AL, O(C

J=1

In this analysis, M = N and 7V = /e are chosen, and the error parameter in computing the Laplace-domain
system matrix Ay (pn) is selected as ¢ = 107!2, The time-domain system matrix in Eq. (33) corresponds to
the integration weights w,_;(At) in the convolution quadrature formula (32). The time-domain system
matrix defined by Eq. (34) can be computed very efficiently by using the fast Fourier transform (FFT). The
Laplace-domain system matrix takes the following form

Ak,(p / \Ja —xlU,] W (x1,0 / \J a2 — YU, 1( ) s (X1, y1; p) dyr dxy. (37)

where 7"333 (x1,31; p) is the Laplace-domain traction Green’s function. Substituting Eq. (23) into Eqgs. (37)
and (35), and using the following relations (Abramowitz and Stegun, 1972; Gradshteyn and Ryzhik, 1980)

[1 eimmUk—l (1/]) di’] _ _%ik+le(a), (38)
J(=8) = (=D&, KO =i'L(9), (39)

the Laplace-domain system matrix glk,(p) and the right-hand side f' can be evaluated as

Akl(p) k+1k] 2/0 F(f)éJk(éa)J,(fa)di, (40)

fl = —znall(oca)ogz, (41)

where J;(+) is the Bessel function of first kind and kth order, /;(-) is the modified Bessel function of first kind
and /th order, and the function F (&) is given by

172 kvl V102 =
F=—=—+ (-1 — ; f =7 —é . 42
71+ 72 = 1+ 72 (&) =2=4) “2)
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By using the following asymptotics (Abramowitz and Stegun, 1972)

2 .
Ji(Ea) o< ) & |Ca| — oo, [Cal = |A], (43)
F(éa) x CE+ D as |Ea| — oo, (44)

it can be shown that the integrand in Eq. (40) behaves as 1/ (&z)2 which is not convenient for numerical
integration due to its slow convergency. To achieve a fast convergency, the Laplace-domain system matrix
Ay(p) is recast into
- . o 1 C D -
Au(p) = §1k+lk1a2{ / [F(é) ER Je(Ea)J(éa)dE + CT, } (45)
0
where use is made of the following integral relations (Gradshteyn and Ryzhik, 1980)

= =1 On

I = —Ji(EJ () dE = 46
= [ s =2, (46)

~ 1 0, k+1=odd,
- 142
b= Fh(OaE= ] 8 i il even (47)
’ (k40 = 1[(k = 1) = 1]
and the constants C and D are given by
C=i1+ (D", D=l - (=D, (48)

The integrand in Eq. (45) behaves as 1/ & for ¢ — oo and it can be integrated very efficiently by using the
interval truncation method. A special feature of the present time-domain BIEM is that it uses Laplace-
domain in lieu of time-domain Green’s functions, which are frequently applied in the conventional time-
domain BEM/BIEM. Furthermore, the present time-domain BIEM has two very attractive features: the
arising Laplace-domain and time-domain system matrices 4y (p) and 4}, are symmetric, and only a single
spatial integral has to be computed numerically though the application of a spatial Galerkin method.

By taking the zero initial conditions (3) into account, an explicit time-stepping scheme from Eq. (33) is
obtained as

K n—1 K
= ()" (f,” - ZA?:~’4>, n=12,..N, (49)
=1

=1 =1

in which (Ag,)fl is the inverse matrix of 49, at the time-step n = 0. The unknown time-dependent expansion
coefficients ¢, can be obtained numerically by using Eq. (49) time-step by time-step.

4. Numerical results and discussions

To check the accuracy and the efficiency of the present time-domain BIEM, extensive numerical tests
have been carried out. Numerical results presented in the following have been obtained by using 20 terms
in the Galerkin-ansatz, i.e., K = L = 20, and a time-step of crAt = a/20 where cr = \/1y/po- The stability
of the present time-domain BIEM has been tested by several numerical examples. These tests have shown
that the present time-domain BIEM is pretty insensitive to the chosen time-step ctAt, and it can provide
stable numerical results even in the large-time range.

The asymptotic crack-tip field for linear elastic FGM has the same singularity and structure as for
homogenous and linear elastic materials (Erdogan, 1995). Thus, the stress intensity factors can be also
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applied to linear elastic FGM as crack-tip characterizing parameters. The transient dynamic stress intensity
factors are related to the COD by

V2n , 1
Ky (1) = Tﬂ(ifh 0) yllgfila \/?—ylmﬁ(yl, 1), (50)

where + indicates the crack-tips at x; = +a. Substituting Eq. (30) into Eq. (50) and using the identity
(Abramowitz and Stegun, 1972)

Un(£1) = (£ (k + 1), (51)

a relation between the dynamic stress intensity factors and the expansion coefficients ¢, (¢) is obtained as

(£1)* key (2) (52)
1

KIJ‘;I(I) \/_ u(zxa,0)

K
h—

For convenience of the presentation, the transient dynamic stress intensity factors K;;(¢) are normalized as

+

Ky (1) = Ky (6) /Ky, Kjy = 0%,v/7a, (53)

where ¢, represents the corresponding static crack-face loading.
4.1. Case I: material gradient parallel to the crack-plane

We first consider Case I in Fig. 1, which has also been investigated previously by Zhang et al. (2001,
2003). In this case, the shear modulus and the mass density change continuously parallel to the crack-plane.
The variations of the shear modulus and the mass density are determined by an exponential law of the
following forms

u(xr) = pe™, p(x1) = poe™. (54)

Numerical results for the normalized dynamic stress intensity factors are presented in Fig. 3, versus the
dimensionless time cr¢/a. The special case aa = 0 corresponds to a homogeneous material. Fig. 3 reveals
that the material gradients have strong influences on the normalized dynamic stress intensity factors K Ill( ).
The peak value and the static limit of the normalized dynamic stress intensity factor at the right crack-tip
K, (7) increase, while those at the left crack-tip K, () decrease with increasing gradient parameter aa. The
normalized dynamic stress intensity factors approach their corresponding static values at large- tlme crt/a.
Between the peak value and the static limit, the normalized dynamic stress intensity factor K,y (¢) at the
right crack-tip may increase or decrease with increasing gradient parameter depending on the time instant
considered, while K,;;(¢) at the left crack-tip always decreases with increasing gradient parameter in the
entire time-range under consideration.

For two different aa-values, the normalized dynamic stress intensity factors Km( ) are presented in Fig.
4, which shows that for aa # 0 the right crack-tip in the direction of increasing shear modulus and mass
density has a larger normalized dynamic stress intensity factor than the left crack-tip does, i.e.,
I_ql(t) > K (). Compared to the dynamic stress intensity factors of a crack in a homogeneous material,
the peak dynamic stress intensity factor KIH( ) and its static limit at the right crack-tip in the direction of
increasing shear modulus and mass density are amplified, which is unfavorable from the fracture mechanics
point of view. In contrast, the peak dynamic stress intensity factor K, (¢) and its static limit at the left
crack-tip in the direction of decreasing shear modulus and mass density are reduced, which is favorable in
view of the fracture mechanics analysis.
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Fig. 4. A comparison of the dynamic stress intensity factors at both crack-tips for Case I (xa = 0.0 and 1.0).

The dynamic overshoot of the stress intensity factors defined by

—+ —+(0)
. max K (t) — K
Dynamic overshoot = o (ﬂ:()O) Il (55)
Klll
is shown in Table 1 and Fig. 5, where Eﬁ;o) is the normalized static stress intensity factors given by
7+0) _ (0) /0 0 _ 0
Ky =Ky /Ky, Ky = o3y, vma. (56)

Fig. 5 shows that in Case I the dynamic overshoot of the stress intensity factor at the right crack-tip in-
creases while that at the left crack-tip decreases nearly linearly with increasing gradient parameter aa. Note
here that the dynamic overshoot of the stress intensity factors for a homogeneous material (i.e., oa = 0.0)
predicted by the present time-domain BIEM is 26.14%, which is only 1.18% below the exact value
(4/m — 1) = 27.32% (Thau and Lu, 1970). The normalized static stress intensity factor for a homogeneous
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Table 1
Dynamic overshoot of the stress intensity factors for Case I

oa max fﬁl Kmo) Overshoot max K, K;fo) Overshoot
0.0 1.2633 1.0015 26.14% 1.2633 1.0015 26.14%
0.5 1.4801 1.0929 35.43% 1.0599 0.8551 23.96%
1.0 1.6998 1.1479 48.08% 0.8822 0.7258 21.56%
1.5 1.9123 1.1808 61.95% 0.7393 0.6266 18.00%
2.0 2.1074 1.1966 76.12% 0.6383 0.5525 15.53%

g

B

o

B

?J>3

o

L

:

>

a

0 T T T
0.0 0.5 1.0 1.5 2.c

oa

Fig. 5. Dynamic overshoot of the stress intensity factors for Case I.

material obtained by the present time-domain BIEM is 1.0015, which is only 0.15% higher than the exact
value 1. This confirms the high accuracy of the time-domain BIEM applied in this paper.

4.2. Case II: material gradient normal to the crack-plane

In Case II as depicted in Fig. 1, the shear modulus and the mass density vary continuously in the di-
rection normal to the crack-plane, which are described by an exponential law of the forms

wix) = wee™,  plx) = pee. (57)

Fig. 6 shows the corresponding numerical results for the normalized dynamic stress intensity factor as a
function of the dimensionless time cr#/a. The special case of a homogeneous material is recovered by setting
fa = 0. Due to the symmetry of the problem it holds E;I = K,;;- The peak value of the normalized dynamic
stress intensity factors increases with increasing gradient parameter fa which is unfavorable. As the ma-
terial gradient parameter fla increases, more pronounced oscillations in the normalized dynamic stress
intensity factors are observed. In contrast to the dynamic stress intensity factors for a finite crack in a
homogeneous material with fa = 0.0, additional local peak values of the transient dynamic stress intensity
factors with slowly decreasing amplitudes are noted in the cases of fa = 1.5 and 2.0. After their peak
values, the normalized dynamic stress intensity factors I?E show a complicated dependence on the gradient
parameter fla and the normalized time crt/a.
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Fig. 6. Dynamic stress intensity factors for Case II.

Table 2
Dynamic overshoot of the stress intensity factors for Case 11
Pa max Ky, jo Overshoot
0.0 1.2633 1.0015 26.14%
0.5 1.2874 1.0280 25.23%
1.0 1.3615 1.0762 26.51%
1.5 1.4858 1.1308 31.39%
2.0 1.6791 1.1875 41.40%
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Fig. 7. Dynamic overshoot of the stress intensity factors for Case II.

Table 2 and Fig. 7 show the dynamic overshoot of the stress intensity factors for Case II, versus the
gradient parameter fja. For small gradient parameter, say fa < 1.0, the dynamic overshoot of the stress
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Fig. 8. Arbitrary crack orientation in a FGM with a unidirectional gradation.

intensity factors remains nearly constant, while it increases with increasing gradient parameter fSa for large
values of fa. It should be noted here that the normalized dynamic stress intensity factors for large gradient
parameter fa oscillate about a constant value and no static value in the large-time limit can be attained by
using the present time-domain BIEM. In this case, the average of the maximum and the minimum dynamic
stress intensity factors in the large-time range is taken as the static values. For a fixed gradient parameter,
the maximum dynamic overshoot of the stress intensity factors in Case II is smaller than in Case I.

4.3. Case III: material gradients parallel and normal to the crack-plane

In Case III of Fig. 1, the material is functionally graded in two directions. The spatial variations of the
shear modulus and the mass density are described by the exponential law (6). Since two gradient parameters
are needed here, the situation becomes very tangled. Here we consider a simple case where the material
gradation is unidirectional but the crack has an arbitrary orientation with respect to the material gradient
(see Fig. 8). This enables us to consider the effects of the material gradient and the crack orientation
separately. In the material coordinate system x| — x5, the shear modulus and the mass density are deter-
mined by

uxh) = e, p(xh) = pee™. (58)
By using the following relation for the coordinate transform
, o
{x}} {cgsq& 51n¢]{x1}7 (59)
X singg  cos¢ X5
we obtain the material constants in the crack coordinate system x; — x;
,U(xlvx2) _ 'uoeﬁ’sindm+[7"cosd>xz7 p(x1,xz) _ poeﬁ'sin(i)xwﬁ'costﬁxz’ (60)

where ¢ represents the inclination angle of the crack. A comparison of Eq. (60) with Eq. (6) yields the
following relation between the gradient parameters and the crack orientation angle

o= f'sin ¢, B = pcos¢ (61)

or equivalently

B =+\/2+f, ¢=tan" <Z) (62)
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Fig. 9. Dynamic stress intensity factors for Case III (f'a = 0.5, ¢ in degrees).

Note here that the two special cases considered previously, i.e., Cases I and II, can be obtained by setting
the inclination angles ¢ = 90° and 0° in Eq. (60).

For two different values of the gradient parameter f'a = 0.5 and 1.0 and for several values of the in-
clination angle ¢, numerical results for the normalized dynamic stress intensity factors are presented in
Figs. 9 and 10 versus the dimensionless time ct#/a. The corresponding gradient parameters oa and fla in the
x| — xp-system are given in Table 3. Figs. 9 and 10 show that the crack orientation with respect to the
material gradient may have significant influences on the transient dynamic stress intensity factors. For a
fixed gradient parameter f'a, the peak dynamic stress intensity factor at the crack-tip x; = +a increases with
increasing inclination angle ¢, while the opposite is observed for the normalized dynamic stress intensity

factor at the crack-tip x; = —a. Surprisingly, the static limit of the normalized dynamic stress intensity
factor at the crack-tip x; = +a is less sensitive to the gradient parameter f'a than that at the crack-tip
x1 = —a. For f'a = 1.0 and after the peak has been reached, the normalized dynamic stress intensity factor

-+ . . . . .
K at x; = +a may decrease with increasing orientation angle ¢.

Ko
)

0 2 4 6 8 10 12

Fig. 10. Dynamic stress intensity factors for Case III (f'a = 1.0, ¢ in degrees).



Ch. Zhang et al. | International Journal of Solids and Structures 40 (2003) 5251-5270 5265

Table 3

Gradient parameters for Case III (f'a = 0.5 and 1.0)
Ba=0.5 oa Pa Ba=1.0 oa Pa
¢ =0° 0.0 0.5 ¢ =0° 0.0 1.0
¢ = 30° 0.25 0.433 ¢ = 30° 0.5 0.866
¢ =45° 0.354 0.354 ¢ =45° 0.707 0.707
¢ = 60° 0.433 0.25 ¢ = 60° 0.866 0.5
¢ =90° 0.5 0.0 ¢ =90° 1.0 0.0

To compare the dynamic stress intensity factors at both crack-tips more clearly, numerical results for
¢ =45° fa=0and f'a =1 are presented in Fig. 11. As in Case I, the normalized dynamic stress intensity
factor at the crack-tip x; = +a in the direction of increasing shear modulus and mass density is larger than
that at the crack-tip x; = —aq, i.e., Eﬂl(t) > K,;;(¢). In comparison with the transient dynamic stress intensity
factors for a crack in a homogeneous material (i.e., f'a = 0.0), the normalized dynamic stress intensity
factor I_frn(t) at the crack-tip x; = +a in the direction of increasing shear modulus and mass density is
increased, while the dynamic stress intensity factor K,;(¢) at the crack-tip x; = —a in the direction of de-
creasing shear modulus and mass density is reduced.

For two values of the gradient parameter f'a = 0.5 and 1.0, the dynamic overshoot of the stress intensity
factors is given in Table 4 and Fig. 12, versus the crack orientation angle ¢. From these results it can be
concluded that the dynamic overshoot of the stress intensity factor at the crack-tip in the direction of
increasing material constants increases while that at the crack-tip in the direction of decreasing material
parameters decreases more or less monotonically with increasing crack orientation angle ¢. A maximum
dynamic overshoot is obtained at the crack-orientation angle ¢ = 90°, i.e., Case I when the material
gradient is parallel to the crack-plane.

To explore the effects of the gradient parameter f'a on the normalized dynamic stress intensity factors
for an inclined crack orientation with respect to the material gradient, numerical results are presented in
Figs. 13 and 14 for two selected values of the inclination angle ¢p = 30° and 60°. The corresponding gradient
parameters in the x; — x,-system are given in Table 5. Figs. 13 and 14 show some combined effects of
parallel (Case I) and perpendicular (Case II) crack orientations as presented in Figs. 3 and 6. For small or
moderate gradient parameter f'a, I?EI(t) at the crack-tip x; = +a increases while K;;(7) at the crack-tip

KE(t)

Fig. 11. A comparison of the dynamic stress intensity factors at both crack-tips for Case III (¢ = 45°).
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Table 4
Dynamic overshoot of the stress intensity factors for f'a = 0.5 and fla = 1.0
Ba=05 Overshoot K, Overshoot K, fa=10 Overshoot K, Overshoot K,
¢ =0° 25.23% 25.23% ¢ =0° 26.51% 26.51%
¢ = 30° 28.94% 23.86% ¢ =30° 34.05% 23.48%
¢ =45° 31.27% 23.78% ¢ =45° 39.04% 22.72%
¢ = 60° 33.39% 23.84% ¢ = 60° 43.60% 22.12%
¢ =90° 35.43% 23.96% ¢ =90° 48.08% 21.56%
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Fig. 12. Dynamic overshoot of the stress intensity factors for Case III (f'a = 0.5 and 1.0, ¢ in degrees).

0

Fig. 13. Dynamic stress intensity factors for Case III (¢ = 30°).

x; = —a decreases with increasing gradient parameter f'a. Furthermore, the normalized dynamic stress
intensity factors approach in this case their corresponding static values very quickly. On the other hand,
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Fig. 14. Dynamic stress intensity factors for Case III (¢ = 60°).
Table 5
Gradient parameters for Case I1I (¢ = 30° and 60°)
¢ =30° oa Pa ¢ = 60° oa Pa
Ba=0.0 0.0 0.0 Ba=0.0 0.0 0.0
Ba=05 0.25 0.433 Ba=05 0.433 0.25
Ba=1.0 0.50 0.866 Ba=1.0 0.866 0.50
fa=15 0.75 1.299 fa=15 1.299 0.75
Ba=20 1.0 1.732 Ba=20 1.732 1.0

this tendency may become tangled for a large value of the gradient parameter f'a: the normalized dynamic
stress intensity factors 1?;1(1) and K () may increase or decrease with increasing gradient parameter fa,
and a more markable oscillation in the dynamic stress intensity factors is noted in the large-time range.
Guided by Fig. 6 for Case II, it is conjectured that the tangled situation, especially the more markable
oscillation in the dynamic stress intensity factors, is caused mainly by the material gradient normal to the
crack-plane. In spite of this complication, the peak value of the dynamic stress intensity factor F;H(t) in-
creases while the maximum K ;(¢) decreases with increasing gradient parameter f'a.

Finally, the dynamic overshoot of the stress intensity factors for two selected orientation angles ¢ = 30°
and 60° is given in Table 6 and Fig. 15, versus the gradient parameter ff'a. For ¢ = 60°, the dynamic
overshoot of the stress intensity factor at the crack-tip in the direction of increasing material constants
increases, while that at the crack-tip in the direction of decreasing material constants decreases with in-
creasing gradient parameter f'a. For ¢ = 30°, the dynamic overshoot of the stress intensity factor at the

Table 6

Dynamic overshoot of the stress intensity factors for ¢ = 30° and 60°
¢ =30° Overshoot K Overshoot Ky ¢ = 60° Overshoot K Overshoot K
Ba=00 26.14% 26.14% Ba=00 26.14% 26.14%
Ba=0.5 28.94% 23.86% Ba=0.5 33.39% 23.84%
Ba=10 34.05% 23.48% Ba=10 43.60% 22.12%
fa=15 42.55% 25.04% fa=15 56.05% 19.81%

Ba=20 54.21% 27.46% Ba=20 70.01% 17.17%
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Fig. 15. Dynamic overshoot of the stress intensity factors for Case III (¢ = 30° and 60°).

crack-tip x; = +a has a similar behavior as for ¢ = 60°, while that at the crack-tip x; = —a is somewhat
complicated. In the latter case, the dynamic overshoot of the stress intensity factor may increase or decrease
with increasing gradient parameter '« depending on the magnitude of fa.

5. Conclusions

In this paper, transient dynamic crack analysis in a FGM is presented. A hypersingular time-domain
traction BIEM is applied for solving the initial-boundary value problem. The spatial variations of the
material parameters of the FGM are determined by an exponential law, which is able to describe both the
unidirectional and the bidirectional material gradation. Transient dynamic stress intensity factors for a
finite crack in an infinite FGM subjected to an impact anti-plane crack-face loading are computed nu-
merically. The present time-domain BIEM has the following special features and advantages:

e It avoids the use of an explicit expression of the time-domain Green'’s functions, which are not available
for general FGM. In lieu of this, the corresponding Laplace-domain Green’s functions are required,
which can be expressed as Fourier integrals.

e No special regularization or integration techniques are needed for computing the arising hypersingular
Hadamard finite-part integral.

e The system matrix is symmetric and only a single spatial integral has to be computed numerically though
the application of a spatial Galerkin method.

e It is highly accurate and efficient for computing the transient dynamic stress intensity factors. Extensive
numerical tests show that the time-stepping scheme presented here is quite insensitive to the selected
time-steps, which is crucial in the conventional time-domain method using time-domain Green’s func-
tions.

From the numerical results obtained in this analysis, the following conclusions can be drawn:

e The material gradients in a FGM may have significant influences on the transient dynamic stress inten-
sity factors and their dynamic overshoot over the corresponding static stress intensity factors. This con-
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cerns both the peak value or the dynamic overshoot of the dynamic stress intensity factors and the time
instant at which the peak value arises.

e For the case with a material gradient parallel to the crack-plane (Case I) and compared to the corre-
sponding values for a homogenous material, the material gradient results in an increase of the peak dy-
namic stress intensity factor at the crack-tip in the direction of increasing material parameters, while a
decrease of the dynamic stress intensity factor at the crack-tip in the direction of decreasing material pa-
rameters. The same conclusion also applies for the dynamic overshoot of the stress intensity factors. The
dynamic stress intensity factor at the crack-tip in the direction of increasing material parameters is larger
than that at the crack-tip in the direction of decreasing material parameters.

e For a material gradient normal to the crack-plane (Case II) and for a small value of the material gradient
parameter, the maximum dynamic stress intensity factors increase with increasing material gradient pa-
rameter. For a large value of the material gradient parameter, however, a tangled situation and a more
pronounced oscillation in the dynamic stress intensity factors is induced. In the latter case, additional
local peak dynamic stress intensity factors with slowly decreasing amplitudes are observed. For small
gradient parameter, the dynamic overshoot of the stress intensity factors is insensitive to the material
gradient, whereas it increases with increasing material gradient for large gradient parameter.

e For material gradients parallel and normal to the crack-plane (Case III) as considered in this analysis for
a unidirectional material gradation with an arbitrarily oriented crack, both the crack orientation and the
material gradient may have considerable influences on the normalized dynamic stress intensity factors
and their dynamic overshoot over the corresponding static stress intensity factors. A maximum dynamic
overshoot of the stress intensity factor at the crack-tip in the direction of increasing material constants is
obtained for a crack orientation parallel to the direction of the material gradation, i.e., Case I of Fig. 1.
However, the corresponding dynamic overshoot of the stress intensity factor at the crack-tip in the
direction of decreasing material constants is the lowest in this case. For a crack orientation around
45° with respect to the direction of the material gradient, a tendency combining the effects induced by
a material gradient parallel/normal to the crack-plane, i.e., the effects in Cases I and 11, is noted.
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