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Abstract

This paper presents a transient dynamic crack analysis for a functionally graded material (FGM) by using a hy-

persingular time-domain boundary integral equation method. The spatial variations of the material parameters of the

FGM are described by an exponential law. A numerical solution procedure is developed for solving the hypersingular

time-domain traction BIE. To avoid the use of time-dependent Green�s functions which are not available for general

FGM, a convolution quadrature formula is adopted for approximating the temporal convolution, while a Galerkin

method is applied for the spatial discretization of the hypersingular time-domain traction BIE. Numerical results for the

transient dynamic stress intensity factors for a finite crack in an infinite and linear elastic FGM subjected to an impact

anti-plane crack-face loading are presented and discussed. The effects of the material gradients of the FGM on the

transient dynamic stress intensity factors and their dynamic overshoot over the corresponding static stress intensity

factors are analyzed.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Functionally graded materials (FGM) received in recent years increasingly growing research interests in

material sciences, applied mechanics and engineering sciences, due to their high performance and improved

mechanical, thermal, corrosion-resistant and wear-resistant properties. The mechanical properties of FGM
are non-homogeneous and changing continuously in position. FGM have no interfaces or interphases

and are hence advantageous over the conventional composites and laminates. FGM can be applied to a

wide range of engineering structures and components such as electronic devices, corrosion-resistant and
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wear-resistant coatings, optical films, thermal barrier coatings and biomaterials. The fracture and fatigue

properties of FGM are important to their mechanical integrity, reliability and durability (Erdogan, 1995;

Miyamoto et al., 1999) in practical engineering applications. Crack analysis of FGM provides a deep in-

sight into the fracture and failure behaviors of FGM, which may aid in the design, optimization and ap-
plications of FGM. The corresponding analytical, numerical and experimental results have direct relevant

applications in material sciences, fracture mechanics, non-destructive material testing, and engineering

constructions.

Due to the non-homogeneous nature of FGM and the arising high mathematical complexities, only few

investigations on transient dynamic responses of cracked FGM have been yet reported in literature. Steady

state crack propagation analysis in FGM has been presented by Atkinson (1975), Atkinson and List (1978),

Li and Weng (2002a), Meguid et al. (2002), Nakagaki et al. (1998), Parameswaran and Shukla (1999), and

Wang and Meguid (1995). Dynamic responses of a crack in FGM under impact loading conditions have
been investigated by Babaei and Lukasiwicz (1998), Li et al. (e.g., Li and Zou, 1999; Li et al., 1999, 2000,

2001a,b; Li and Weng, 2001, 2002b; Li et al., 2002), Marur and Tippur (2000), Nakagaki et al. (1995),

Parameswaran and Shukla (1998), Rousseau and Tippur (2001a,b, 2002), Wang et al. (1998), and Zhang

et al. (2001, 2003). Since analytical methods can be applied successfully only to very few simple dynamic

crack problems in FGM, most of the afore mentioned works used either numerical or experimental

methods. As numerical methods, the singular or the dual integral equation method in conjunction with the

Laplace-transform technique, and the finite element method (FEM) are often used. An alternative method

to the very established and widely applied FEM is the boundary element method (BEM) or boundary
integral equation method (BIEM), which has been proven to be highly accurate and efficient for dynamic

crack analysis of homogeneous and linear elastic materials (e.g., Aliabadi, 2002; Beskos, 1997; Dom�ıınguez,
1993; Zhang, 2002). In this paper, transient dynamic analysis of a finite anti-plane crack in a FGM sub-

jected to an impact crack-face loading is presented by a using a time-domain BIEM.

In contrast to the BEM/BIEM for homogeneous and linear elastic materials, the applications of the

BEM/BIEM to FGM are yet very limited, because the corresponding time-domain fundamental solutions

or Green�s functions for general FGM are either not available or mathematically too complex. A time-

domain BIEM is presented and applied by Zhang et al. (2001, 2003) to a finite crack in an infinite FGM
which is subjected to an impact anti-plane crack-face loading. To describe the spatial variations of the

material parameters of the FGM, an exponential law is used where a symmetrical material gradation with

respect to the crack-plane is assumed. In this paper, we extend the method of Zhang et al. (2001, 2003) to a

more general case of FGM by removing the symmetry constraint in the material gradation with respect to

the crack-plane. The initial-boundary value problem is formulated as a hypersingualr time-domain traction

BIE. Since the corresponding time-domain Green�s functions are not available for general FGM, the

convolution quadrature formula of Lubich (1988) is applied for approximating the temporal convolution

of the time-domain BIE. A spatial Galerkin method is adopted for the spatial discretization of the time-
domain BIE. In lieu of the time-domain Green�s functions which are frequently used in the conventional

time-domain BEM/BIEM, the time-domain BIEM presented in this paper requires an explicit expression of

the Laplace-domain Green�s functions only, which can be expressed as Fourier integrals. A series of

Chebyshev polynomials of second kind is applied for approximating the spatial variation of the unknown

crack-opening-displacement (COD). An important advantage of the present time-domain BIEM is that it

requires no special regularization or integration techniques for computing the arising hypersingular

Hadamard finite-part integral. Numerical results are presented and discussed for the following three cases

(see Fig. 1):

• Case I: Material gradient parallel to the crack-plane.

• Case II: Material gradient normal to the crack-plane.

• Case III: Material gradients parallel and normal to the crack-plane.
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Fig. 1. Investigated cases––Case I: Material gradient parallel to the crack-plane, Case II: Material gradient normal to the crack-plane

and Case III: Material gradients parallel and normal to the crack-plane.
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Special attention of the analysis is devoted to the investigation of the effects of the material gradients on

the transient dynamic stress intensity factors and their dynamic overshoot over the corresponding static

stress intensity factors.
2. Problem formulation and time-domain BIE

Let us consider a finite crack of length 2a in an infinite and linear elastic FGM as shown in Fig. 2. The

crack is subjected to an impact anti-plane crack-face loading, and the cracked FGM satisfies the equation

of motion
r3a;a ¼ qðxÞ€uu3; ð1Þ
the Hooke�s law
r3a ¼ lðxÞu3;a; ð2Þ
the initial conditions
u3ðx; tÞ ¼ _uu3ðx; tÞ ¼ 0; t ¼ 0; ð3Þ
and the traction boundary condition on the crack-faces
f3ðx1; x2 ¼ 0; tÞ ¼ r�
32ðx1; tÞ ¼ r0

32HðtÞ; x1 2 ½�a;þa	: ð4Þ
In Eqs. (1)–(4), f3 represents the traction component, u3 denotes the displacement component in the x3-
direction, r3a are the shear stress components, lðxÞ is the shear modulus, qðxÞ is the mass density, r0

32 is the

stress amplitude, HðtÞ is the Heaviside function, a comma after a quantity stands for partial derivatives with
respect to spatial variables, superscript dots indicate temporal derivatives of the quantity, and the con-

ventional summation rule over repeated indices is applied.
32

32
0

Fig. 2. A finite crack of length 2a in an infinite FGM.
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To describe the spatial variations of the shear modulus and the mass density, the following exponential

law has been used in the previous works (Zhang et al., 2001, 2003)
lðxÞ ¼ l0e
ax1þbjx2j; qðxÞ ¼ q0e

ax1þbjx2jþd; ð5Þ
which implies a symmetrical material gradient with respect to the crack-plane. Note here that the parameter

d in Eq. (5) is only a mathematical artifact and does not lead to any gradient effects. In this paper, the
symmetry constraint and the parameter d in Eq. (6) are removed. Thus, the shear modulus and the mass

density are described by a general exponential law of the forms
lðxÞ ¼ l0e
ax1þbx2 ; qðxÞ ¼ q0e

ax1þbx2 ; ð6Þ
where l0, q0, a and b are material parameters of the FGM. The exponential law (6) enables us to describe

the spatial variations of the material constants in both unidirectionally and bidirectionally FGM.

The equation of motion (1) can be written in terms of the displacement component u3ðxÞ as

l;1u3;1 þ lu3;11 þ l;2u3;2 þ lu3;22 ¼ q€uu3: ð7Þ
By applying the one-sided Laplace transform
f̂f ðpÞ ¼
Z 1

0

f ðtÞe�pt dt ð8Þ
to Eq. (7), the equation of motion in the Laplace transformed domain takes the form
l;1ûu3;1 þ lûu3;11 þ l;2ûu3;2 þ lûu3;22 ¼ qp2ûu3; ð9Þ
where p is a complex Laplace transform parameter. The boundary and the continuity/discontinuity con-

ditions on the crack-faces jx1j6 a and the crack-plane jx1j61 can be stated as
r̂r32ðx1; 0Þ ¼ r̂r�
32ðx1; 0Þ; jx1j6 a; ð10Þ

r̂r32ðx1; 0þÞ ¼ r̂r32ðx1; 0�Þ; jx1j61; ð11Þ

ûu3ðx1; 0þÞ ¼ ûu3ðx1; 0�Þ; jx1j > a; ð12Þ

ûu3ðx1; 0þÞ � ûu3ðx1; 0�Þ ¼ Dûu3ðx1Þ; jx1j < a; ð13Þ

where Dûu3ðx1Þ is the COD in the Laplace transformed domain.

The displacement component ûu3ðxÞ can be expressed as a Fourier integral of the form
ûu3ðxÞ ¼
R1
�1 f1ðnÞeinx1�c1x2 dn; x2 > 0;R1
�1 f2ðnÞeinx1þc2x2 dn; x2 < 0;

(
ð14Þ
where
cj ¼
1

2
ð
�

� 1Þj�1b þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4½ina � n2 � ðq0=l0Þp2	

q �
; j ¼ 1; 2: ð15Þ
In Eqs. (14) and (15), f1ðnÞ and f2ðnÞ are unknown functions to be determined, and the regularity condition
at infinite requires ReðcjÞP 0.

By substituting Eq. (14) into Hooke�s law (2) and by using the continuity condition (11), a relation

between f1 and f2 is obtained as
f2 ¼ � c1
c2

f1: ð16Þ
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Eq. (14) together with Eqs. (12), (13) and (16) results in
Z 1

�1
f1ðnÞ

c1 þ c2
c2

einx1 dn ¼ 0; jx1j > a;
Dûu3ðx1Þ; jx1j < a:

�
ð17Þ
Eq. (17) can be inverted as
f1ðnÞ ¼
1

2p
c2

c1 þ c2

Z þa

�a
e�iny1Dûu3ðy1Þdy1: ð18Þ
Substitution of Eq. (18) into Eq. (16) yields
f2ðnÞ ¼ � 1

2p
c1

c1 þ c2

Z þa

�a
e�iny1Dûu3ðy1Þdy1: ð19Þ
By inserting Eqs. (18) and (19) into Eq. (14) a representation formula for the Laplace transform of the

displacement component ûu3ðxÞ is obtained as
ûu3ðxÞ ¼
Z þa

�a
r̂rG
323ðx; y; pÞDûu3ðy1Þdy1 ð20Þ
in which the Laplace transform of the dynamic stress Green�s function r̂rG
323ðx; y; pÞ is given by
r̂rG
323ðx; y; pÞ ¼

1

2p

Z 1

�1

c2
c1 þ c2

einðx1�y1Þ�c1ðx2�y2Þ dn; x2 > y2;

r̂rG
323ðx; y; pÞ ¼

�1
2p

Z 1

�1

c1
c1 þ c2

einðx1�y1Þþc2ðx2�y2Þ dn; x2 < y2:
ð21Þ
Substitution of Eq. (20) into Hooke�s law (2) yields a representation integral for the Laplace transform of

the traction component f̂f3ðxÞ
f̂f3ðxÞ ¼
Z þa

�a

bTT G
323ðx1; y1; pÞDûu3ðy1Þdy1; ð22Þ
where the Laplace-domain traction Green�s function bTT G
323ðx; y; pÞ is given by
bTT G
323ðx; y; pÞ ¼

lðxÞ
2p

Z 1

�1

c1c2
c1 þ c2

einðx1�y1Þ�c1ðx2�y2Þ dn; x2 > y2;

bTT G
323ðx; y; pÞ ¼

lðxÞ
2p

Z 1

�1

c1c2
c1 þ c2

einðx1�y1Þþc2ðx2�y2Þ dn; x2 < y2:
ð23Þ
In the time-domain, the corresponding representation formulae for the displacement and the traction

components can be written as
u3ðx; tÞ ¼
Z þa

�a
rG
323ðx; y; t; sÞ � Du3ðy1; sÞdy1; x1 62 ½�a;þa	; ð24Þ

f3ðx; tÞ ¼
Z þa

�a
TG
323ðx; y; t; sÞ � Du3ðy1; sÞdy1; x1 62 ½�a;þa	; ð25Þ
where an asterisk �*� denotes Riemann convolution which is defined by
f ðtÞ ¼
Z t

0

gðt � sÞhðsÞds: ð26Þ
In Eqs. (24) and (25), rG
323ðx; y; t; sÞ and TG

323ðx; y; t; sÞ are the corresponding time-domain stress and traction

Green�s functions, and Du3ðy1; sÞ is the time-dependent COD defined by
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Du3ðy1; sÞ ¼ u3ðy1; 0þ; sÞ � u3ðy1; 0�; sÞ: ð27Þ
By taking the limit process x! Cþ
c 2 fy1 6 jaj; y2 ¼ 0þg and using the boundary condition (4), a time-

domain traction BIE is obtained as
Z þa

�a
TG
323ðx; y; t; sÞ � Du3ðy1; sÞdy1 ¼ r�

32ðx1; tÞ; x1 2 ½�a;þa	: ð28Þ
By multiplying both sides of Eq. (28) with l�1ðx1; 0Þ a more convenient form for the numerical solution of

the time-domain BIE is obtained as
l�1ðx1; 0Þ
Z þa

�a
TG
323ðx; y; t; sÞ � Du3ðy1; sÞdy1 ¼ r�

32ðx1; tÞl�1ðx1; 0Þ; x1 2 ½�a;þa	: ð29Þ
It can be easily shown that the traction BIE (29) has a hypersingularity of the order 1=jx� yj2 as x! y.

Here, the hypersingular integral is regarded as the Hadamard finite-part integral. To solve the hypersin-

gular BIE (29), a spatial Galerkin method is applied, which requires no special integration or regularization

technique for computing the arising hypersingular integral. It should be remarked here that an explicit

expression of the time-domain traction Green�s function TG
323ðx; y; t; sÞ is not needed in the present BIEM

as will be seen in Section 3. In lieu of this, its Laplace transform bTT G
323ðx; y; pÞ is required, which is given by

Eq. (23).
3. Numerical solution procedure

To solve the hypersingular time-domain BIE (29) and to avoid the use of the time-domain Green�s
functions which are not available for general FGM, the convolution quadrature formula of Lubich (1988)

is applied for approximating the temporal convolution, while a Galerkin method is adopted for the spatial
discretization of the hypersingular time-domain traction BIE. The unknown COD is approximated by the

following Galerkin-ansatz
Du3ðy1; sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � y21

q XK

k¼1
ckðsÞUk�1

y1
a


 �
; ð30Þ
where K is the total number of the used terms in the ansatz, ckðsÞ are the unknown time-dependent ex-

pansion coefficients and Uk�1ðy1=aÞ are the Chebyshev polynomials of second kind. In Eq. (30), the termffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � y21

p
is introduced to describe the local ‘‘square-root’’ behavior of the COD at the crack-tips y1 ¼ �a

correctly. Substituting Eq. (30) into Eq. (29), multiplying both sides by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x21

p
Ul�1ðx1=aÞ and integrating

them with respect to x1 from �a to þa, the following time-domain Galerkin-BIE is obtained
XK

k¼1

Z þa

�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x21

q
Ul�1

x1
a


 �
l�1ðx1; 0Þ

Z þa

�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � y21

q
Uk�1

y1
a


 �
TG
323ðx1; y1; t; sÞ � ckðsÞdy1 dx1

¼
Z þa

�a
r�
32ðx1; tÞl�1ðx1; 0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x21

q
Ul�1

x1
a


 �
dx1; l ¼ 1; 2; . . . ;K: ð31Þ
The application of the convolution quadrature formula of Lubich (1988)
f ðtÞ ¼
Z t

0

gðt � sÞhðsÞds ) f ðnDtÞ ¼
Xn

j¼0
xn�jðDtÞhðjDtÞ ð32Þ
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to Eq. (31) results in a system of linear algebraic equations for the expansion coefficients as
Xn

j¼0

XK

k¼1
An�j

kl cj
k ¼ f n

l ; n ¼ 0; 1; 2; . . . ;N ; ð33Þ
where the time variable t is divided into N equal time-steps Dt. The time-domain system matrix and the

right-hand side of Eq. (33) are given by
An
kl ¼

r�n

M

XM�1

m¼0
ÂAklðpmÞe�2pinm=M ; ð34Þ

f n
l ¼ ð�1Þl

Z þa

�a
r�
32ðx1; nDtÞl�1ðx1; 0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x21

q
Ul�1

x1
a


 �
dx1 ð35Þ
in which (Lubich, 1988)
pm ¼ dðfmÞ=Dt; dðfmÞ ¼
X2
j¼1

ð1� fmÞj
=j; fm ¼ re2pim=M : ð36Þ
In this analysis, M ¼ N and rN ¼
ffiffi
�

p
are chosen, and the error parameter in computing the Laplace-domain

system matrix ÂAklðpmÞ is selected as e ¼ 10�12. The time-domain system matrix in Eq. (33) corresponds to

the integration weights xn�jðDtÞ in the convolution quadrature formula (32). The time-domain system

matrix defined by Eq. (34) can be computed very efficiently by using the fast Fourier transform (FFT). The
Laplace-domain system matrix takes the following form
ÂAklðpÞ ¼ ð�1Þl
Z þa

�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x21

q
Ul�1

x1
a


 �
l�1ðx1; 0Þ

Z þa

�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � y21

q
Uk�1

y1
a


 �bTT G
323ðx1; y1; pÞdy1 dx1: ð37Þ
where bTT G
323ðx1; y1; pÞ is the Laplace-domain traction Green�s function. Substituting Eq. (23) into Eqs. (37)

and (35), and using the following relations (Abramowitz and Stegun, 1972; Gradshteyn and Ryzhik, 1980)
Z 1

�1
eiag

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
Uk�1ðgÞdg ¼ � kp

a
ikþ1JkðaÞ; ð38Þ

Jkð�nÞ ¼ ð�1ÞkJkðnÞ; JkðinÞ ¼ ikIkðnÞ; ð39Þ
the Laplace-domain system matrix ÂAklðpÞ and the right-hand side f n
l can be evaluated as
ÂAklðpÞ ¼
p
2
ikþlkla2

Z 1

0

F ðnÞ 1
n2

JkðnaÞJlðnaÞdn; ð40Þ

f n
l ¼ � l

a
paIlðaaÞr0

32; ð41Þ
where Jkð�Þ is the Bessel function of first kind and kth order, Ilð�Þ is the modified Bessel function of first kind
and lth order, and the function F ðnÞ is given by
F ¼ �cc1�cc2
�cc1 þ �cc2

þ ð�1Þkþl c1c2
c1 þ c2

; �ccjðnÞ ¼ cjð�nÞ: ð42Þ
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By using the following asymptotics (Abramowitz and Stegun, 1972)
JkðnaÞ /
ffiffiffiffiffiffiffiffiffiffiffiffi
2

pðnaÞ

s
as jnaj ! 1; jnajP jkj; ð43Þ

F ðnaÞ / Cn þ D as jnaj ! 1; ð44Þ

it can be shown that the integrand in Eq. (40) behaves as 1=ðnaÞ2 which is not convenient for numerical

integration due to its slow convergency. To achieve a fast convergency, the Laplace-domain system matrix

ÂAklðpÞ is recast into
ÂAklðpÞ ¼
p
2
ikþlkla2

Z 1

0

F ðnÞ 1
n2

��
� C

n
� D

n2

�
JkðnaÞJlðnaÞdn þ C�II1

�
; ð45Þ
where use is made of the following integral relations (Gradshteyn and Ryzhik, 1980)
�II1 ¼
Z 1

0

1

n
JkðnÞJlðnÞdn ¼ dkl

k þ l
; ð46Þ

�II2 ¼
Z 1

0

1

n2
JkðnÞJlðnÞdn ¼

0; k þ l ¼ odd;
4

p
ik�lþ2

½ðk þ lÞ2 � 1	½ðk � lÞ2 � 1	
; k þ l ¼ even

8<: ð47Þ
and the constants C and D are given by
C ¼ 1
2
½1þ ð�1Þkþl	; D ¼ 1

4
ia½1� ð�1Þkþl	: ð48Þ
The integrand in Eq. (45) behaves as 1=n4 for n ! 1 and it can be integrated very efficiently by using the

interval truncation method. A special feature of the present time-domain BIEM is that it uses Laplace-

domain in lieu of time-domain Green�s functions, which are frequently applied in the conventional time-
domain BEM/BIEM. Furthermore, the present time-domain BIEM has two very attractive features: the

arising Laplace-domain and time-domain system matrices ÂAklðpÞ and An
kl are symmetric, and only a single

spatial integral has to be computed numerically though the application of a spatial Galerkin method.

By taking the zero initial conditions (3) into account, an explicit time-stepping scheme from Eq. (33) is

obtained as
cn
k ¼

XK

l¼1
ðA0

klÞ
�1 f n

l

 
�
Xn�1
j¼1

XK

i¼1
An�j

li cj
i

!
; n ¼ 1; 2; . . . ;N ; ð49Þ
in which ðA0
klÞ

�1
is the inverse matrix of A0

kl at the time-step n ¼ 0. The unknown time-dependent expansion

coefficients cj
k can be obtained numerically by using Eq. (49) time-step by time-step.
4. Numerical results and discussions

To check the accuracy and the efficiency of the present time-domain BIEM, extensive numerical tests

have been carried out. Numerical results presented in the following have been obtained by using 20 terms

in the Galerkin-ansatz, i.e., K ¼ L ¼ 20, and a time-step of cTDt ¼ a=20 where cT ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
l0=q0

p
. The stability

of the present time-domain BIEM has been tested by several numerical examples. These tests have shown

that the present time-domain BIEM is pretty insensitive to the chosen time-step cTDt, and it can provide

stable numerical results even in the large-time range.

The asymptotic crack-tip field for linear elastic FGM has the same singularity and structure as for
homogenous and linear elastic materials (Erdogan, 1995). Thus, the stress intensity factors can be also
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applied to linear elastic FGM as crack-tip characterizing parameters. The transient dynamic stress intensity

factors are related to the COD by
K�
IIIðtÞ ¼

ffiffiffiffiffiffi
2p

p

4
lð�a; 0Þ lim

y1!�a

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
a � y1

p Du3ðy1; tÞ; ð50Þ
where � indicates the crack-tips at x1 ¼ �a. Substituting Eq. (30) into Eq. (50) and using the identity
(Abramowitz and Stegun, 1972)
Ukð�1Þ ¼ ð�1Þkðk þ 1Þ; ð51Þ
a relation between the dynamic stress intensity factors and the expansion coefficients ckðtÞ is obtained as
K�
IIIðtÞ ¼

ffiffiffiffiffiffi
pa

p

2
lð�a; 0Þ

XK

k¼1
ð�1Þk�1kckðtÞ: ð52Þ
For convenience of the presentation, the transient dynamic stress intensity factors K
�
IIIðtÞ are normalized as
K
�
IIIðtÞ ¼ K�

IIIðtÞ=K0
III; K0

III ¼ r0
32

ffiffiffiffiffiffi
pa

p
; ð53Þ
where r0
32 represents the corresponding static crack-face loading.

4.1. Case I: material gradient parallel to the crack-plane

We first consider Case I in Fig. 1, which has also been investigated previously by Zhang et al. (2001,

2003). In this case, the shear modulus and the mass density change continuously parallel to the crack-plane.

The variations of the shear modulus and the mass density are determined by an exponential law of the

following forms
lðx1Þ ¼ l0e
ax1 ; qðx1Þ ¼ q0e

ax1 : ð54Þ
Numerical results for the normalized dynamic stress intensity factors are presented in Fig. 3, versus the

dimensionless time cTt=a. The special case aa ¼ 0 corresponds to a homogeneous material. Fig. 3 reveals
that the material gradients have strong influences on the normalized dynamic stress intensity factors K

�
IIIðtÞ.

The peak value and the static limit of the normalized dynamic stress intensity factor at the right crack-tip

K
þ
IIIðtÞ increase, while those at the left crack-tip K

�
IIIðtÞ decrease with increasing gradient parameter aa. The

normalized dynamic stress intensity factors approach their corresponding static values at large-time cTt=a.
Between the peak value and the static limit, the normalized dynamic stress intensity factor K

þ
IIIðtÞ at the

right crack-tip may increase or decrease with increasing gradient parameter depending on the time instant

considered, while K
�
IIIðtÞ at the left crack-tip always decreases with increasing gradient parameter in the

entire time-range under consideration.
For two different aa-values, the normalized dynamic stress intensity factors K

�
IIIðtÞ are presented in Fig.

4, which shows that for aa 6¼ 0 the right crack-tip in the direction of increasing shear modulus and mass

density has a larger normalized dynamic stress intensity factor than the left crack-tip does, i.e.,

K
þ
IIIðtÞP K

�
IIIðtÞ. Compared to the dynamic stress intensity factors of a crack in a homogeneous material,

the peak dynamic stress intensity factor K
þ
IIIðtÞ and its static limit at the right crack-tip in the direction of

increasing shear modulus and mass density are amplified, which is unfavorable from the fracture mechanics

point of view. In contrast, the peak dynamic stress intensity factor K
�
IIIðtÞ and its static limit at the left

crack-tip in the direction of decreasing shear modulus and mass density are reduced, which is favorable in
view of the fracture mechanics analysis.
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The dynamic overshoot of the stress intensity factors defined by
Dynamic overshoot ¼ maxK
�
IIIðtÞ � K

�ð0Þ
III

K
�ð0Þ
III

ð55Þ
is shown in Table 1 and Fig. 5, where K
�ð0Þ
III is the normalized static stress intensity factors given by
K
�ð0Þ
III ¼ K�ð0Þ

III =K0
III; K0

III ¼ r0
32

ffiffiffiffiffiffi
pa

p
: ð56Þ
Fig. 5 shows that in Case I the dynamic overshoot of the stress intensity factor at the right crack-tip in-

creases while that at the left crack-tip decreases nearly linearly with increasing gradient parameter aa. Note
here that the dynamic overshoot of the stress intensity factors for a homogeneous material (i.e., aa ¼ 0:0)
predicted by the present time-domain BIEM is 26.14%, which is only 1.18% below the exact value
ð4=p � 1Þ ¼ 27:32% (Thau and Lu, 1970). The normalized static stress intensity factor for a homogeneous



Table 1

Dynamic overshoot of the stress intensity factors for Case I

aa maxK
þ
III K

þð0Þ
III Overshoot maxK

�
III K

�ð0Þ
III Overshoot

0.0 1.2633 1.0015 26.14% 1.2633 1.0015 26.14%

0.5 1.4801 1.0929 35.43% 1.0599 0.8551 23.96%

1.0 1.6998 1.1479 48.08% 0.8822 0.7258 21.56%

1.5 1.9123 1.1808 61.95% 0.7393 0.6266 18.00%

2.0 2.1074 1.1966 76.12% 0.6383 0.5525 15.53%
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Fig. 5. Dynamic overshoot of the stress intensity factors for Case I.
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material obtained by the present time-domain BIEM is 1.0015, which is only 0.15% higher than the exact

value 1. This confirms the high accuracy of the time-domain BIEM applied in this paper.
4.2. Case II: material gradient normal to the crack-plane

In Case II as depicted in Fig. 1, the shear modulus and the mass density vary continuously in the di-

rection normal to the crack-plane, which are described by an exponential law of the forms
lðx2Þ ¼ l0e
bx2 ; qðx2Þ ¼ q0e

bx2 : ð57Þ
Fig. 6 shows the corresponding numerical results for the normalized dynamic stress intensity factor as a

function of the dimensionless time cTt=a. The special case of a homogeneous material is recovered by setting

ba ¼ 0. Due to the symmetry of the problem it holds K
þ
III ¼ K

�
III. The peak value of the normalized dynamic

stress intensity factors increases with increasing gradient parameter ba which is unfavorable. As the ma-

terial gradient parameter ba increases, more pronounced oscillations in the normalized dynamic stress
intensity factors are observed. In contrast to the dynamic stress intensity factors for a finite crack in a

homogeneous material with ba ¼ 0:0, additional local peak values of the transient dynamic stress intensity

factors with slowly decreasing amplitudes are noted in the cases of ba ¼ 1:5 and 2.0. After their peak

values, the normalized dynamic stress intensity factors K
�
III show a complicated dependence on the gradient

parameter ba and the normalized time cTt=a.
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Fig. 6. Dynamic stress intensity factors for Case II.

Table 2

Dynamic overshoot of the stress intensity factors for Case II

ba maxK
�
III K

�ð0Þ
III Overshoot

0.0 1.2633 1.0015 26.14%

0.5 1.2874 1.0280 25.23%

1.0 1.3615 1.0762 26.51%

1.5 1.4858 1.1308 31.39%

2.0 1.6791 1.1875 41.40%
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Fig. 7. Dynamic overshoot of the stress intensity factors for Case II.
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Table 2 and Fig. 7 show the dynamic overshoot of the stress intensity factors for Case II, versus the
gradient parameter ba. For small gradient parameter, say ba < 1:0, the dynamic overshoot of the stress
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Fig. 8. Arbitrary crack orientation in a FGM with a unidirectional gradation.
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intensity factors remains nearly constant, while it increases with increasing gradient parameter ba for large

values of ba. It should be noted here that the normalized dynamic stress intensity factors for large gradient

parameter ba oscillate about a constant value and no static value in the large-time limit can be attained by
using the present time-domain BIEM. In this case, the average of the maximum and the minimum dynamic

stress intensity factors in the large-time range is taken as the static values. For a fixed gradient parameter,

the maximum dynamic overshoot of the stress intensity factors in Case II is smaller than in Case I.
4.3. Case III: material gradients parallel and normal to the crack-plane

In Case III of Fig. 1, the material is functionally graded in two directions. The spatial variations of the
shear modulus and the mass density are described by the exponential law (6). Since two gradient parameters

are needed here, the situation becomes very tangled. Here we consider a simple case where the material

gradation is unidirectional but the crack has an arbitrary orientation with respect to the material gradient

(see Fig. 8). This enables us to consider the effects of the material gradient and the crack orientation

separately. In the material coordinate system x01 � x02, the shear modulus and the mass density are deter-

mined by
lðx02Þ ¼ l0e
b0x0

2 ; qðx02Þ ¼ q0e
b0x0

2 : ð58Þ

By using the following relation for the coordinate transform
x01
x02

� �
¼ cos/ � sin/

sin/ cos/

� �
x1
x2

� �
; ð59Þ
we obtain the material constants in the crack coordinate system x1 � x2
lðx1; x2Þ ¼ l0e
b0 sin/x1þb0 cos/x2 ; qðx1; x2Þ ¼ q0e

b0 sin/x1þb0 cos/x2 ; ð60Þ

where / represents the inclination angle of the crack. A comparison of Eq. (60) with Eq. (6) yields the

following relation between the gradient parameters and the crack orientation angle
a ¼ b0 sin/; b ¼ b0 cos/ ð61Þ

or equivalently
b0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q
; / ¼ tan�1 a

b

� �
: ð62Þ
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Note here that the two special cases considered previously, i.e., Cases I and II, can be obtained by setting

the inclination angles / ¼ 90� and 0� in Eq. (60).

For two different values of the gradient parameter b0a ¼ 0:5 and 1.0 and for several values of the in-

clination angle /, numerical results for the normalized dynamic stress intensity factors are presented in

Figs. 9 and 10 versus the dimensionless time cTt=a. The corresponding gradient parameters aa and ba in the
x1 � x2-system are given in Table 3. Figs. 9 and 10 show that the crack orientation with respect to the

material gradient may have significant influences on the transient dynamic stress intensity factors. For a

fixed gradient parameter b0a, the peak dynamic stress intensity factor at the crack-tip x1 ¼ þa increases with
increasing inclination angle /, while the opposite is observed for the normalized dynamic stress intensity

factor at the crack-tip x1 ¼ �a. Surprisingly, the static limit of the normalized dynamic stress intensity

factor at the crack-tip x1 ¼ þa is less sensitive to the gradient parameter b0a than that at the crack-tip

x1 ¼ �a. For b0a ¼ 1:0 and after the peak has been reached, the normalized dynamic stress intensity factor

K
þ
III at x1 ¼ þa may decrease with increasing orientation angle /.
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Fig. 10. Dynamic stress intensity factors for Case III (b0a ¼ 1:0, / in degrees).



Table 3

Gradient parameters for Case III (b0a ¼ 0:5 and 1.0)

b0a ¼ 0:5 aa ba b0a ¼ 1:0 aa ba

/ ¼ 0� 0.0 0.5 / ¼ 0� 0.0 1.0

/ ¼ 30� 0.25 0.433 / ¼ 30� 0.5 0.866

/ ¼ 45� 0.354 0.354 / ¼ 45� 0.707 0.707

/ ¼ 60� 0.433 0.25 / ¼ 60� 0.866 0.5

/ ¼ 90� 0.5 0.0 / ¼ 90� 1.0 0.0
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To compare the dynamic stress intensity factors at both crack-tips more clearly, numerical results for
/ ¼ 45�, b0a ¼ 0 and b0a ¼ 1 are presented in Fig. 11. As in Case I, the normalized dynamic stress intensity

factor at the crack-tip x1 ¼ þa in the direction of increasing shear modulus and mass density is larger than

that at the crack-tip x1 ¼ �a, i.e., K
þ
IIIðtÞP K

�
IIIðtÞ. In comparison with the transient dynamic stress intensity

factors for a crack in a homogeneous material (i.e., b0a ¼ 0:0), the normalized dynamic stress intensity

factor K
þ
IIIðtÞ at the crack-tip x1 ¼ þa in the direction of increasing shear modulus and mass density is

increased, while the dynamic stress intensity factor K
�
IIIðtÞ at the crack-tip x1 ¼ �a in the direction of de-

creasing shear modulus and mass density is reduced.

For two values of the gradient parameter b0a ¼ 0:5 and 1.0, the dynamic overshoot of the stress intensity
factors is given in Table 4 and Fig. 12, versus the crack orientation angle /. From these results it can be

concluded that the dynamic overshoot of the stress intensity factor at the crack-tip in the direction of

increasing material constants increases while that at the crack-tip in the direction of decreasing material

parameters decreases more or less monotonically with increasing crack orientation angle /. A maximum

dynamic overshoot is obtained at the crack-orientation angle / ¼ 90�, i.e., Case I when the material

gradient is parallel to the crack-plane.

To explore the effects of the gradient parameter b0a on the normalized dynamic stress intensity factors

for an inclined crack orientation with respect to the material gradient, numerical results are presented in
Figs. 13 and 14 for two selected values of the inclination angle / ¼ 30� and 60�. The corresponding gradient
parameters in the x1 � x2-system are given in Table 5. Figs. 13 and 14 show some combined effects of

parallel (Case I) and perpendicular (Case II) crack orientations as presented in Figs. 3 and 6. For small or

moderate gradient parameter b0a, K
þ
IIIðtÞ at the crack-tip x1 ¼ þa increases while K

�
IIIðtÞ at the crack-tip
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Fig. 11. A comparison of the dynamic stress intensity factors at both crack-tips for Case III ð/ ¼ 45�Þ.



Table 4

Dynamic overshoot of the stress intensity factors for b0a ¼ 0:5 and b0a ¼ 1:0

b0a ¼ 0:5 Overshoot Kþ
III Overshoot K�

III b0a ¼ 1:0 Overshoot Kþ
III Overshoot K�

III

/ ¼ 0� 25.23% 25.23% / ¼ 0� 26.51% 26.51%

/ ¼ 30� 28.94% 23.86% / ¼ 30� 34.05% 23.48%

/ ¼ 45� 31.27% 23.78% / ¼ 45� 39.04% 22.72%

/ ¼ 60� 33.39% 23.84% / ¼ 60� 43.60% 22.12%

/ ¼ 90� 35.43% 23.96% / ¼ 90� 48.08% 21.56%
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Fig. 12. Dynamic overshoot of the stress intensity factors for Case III (b0a ¼ 0:5 and 1.0, / in degrees).
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Fig. 13. Dynamic stress intensity factors for Case III ð/ ¼ 30�Þ.
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x1 ¼ �a decreases with increasing gradient parameter b0a. Furthermore, the normalized dynamic stress

intensity factors approach in this case their corresponding static values very quickly. On the other hand,



Table 5

Gradient parameters for Case III (/ ¼ 30� and 60�)

/ ¼ 30� aa ba / ¼ 60� aa ba

b0a ¼ 0:0 0.0 0.0 b0a ¼ 0:0 0.0 0.0

b0a ¼ 0:5 0.25 0.433 b0a ¼ 0:5 0.433 0.25

b0a ¼ 1:0 0.50 0.866 b0a ¼ 1:0 0.866 0.50

b0a ¼ 1:5 0.75 1.299 b0a ¼ 1:5 1.299 0.75

b0a ¼ 2:0 1.0 1.732 b0a ¼ 2:0 1.732 1.0
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Fig. 14. Dynamic stress intensity factors for Case III ð/ ¼ 60�Þ.
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this tendency may become tangled for a large value of the gradient parameter b0a: the normalized dynamic
stress intensity factors K

þ
IIIðtÞ and K

�
IIIðtÞ may increase or decrease with increasing gradient parameter b0a,

and a more markable oscillation in the dynamic stress intensity factors is noted in the large-time range.

Guided by Fig. 6 for Case II, it is conjectured that the tangled situation, especially the more markable

oscillation in the dynamic stress intensity factors, is caused mainly by the material gradient normal to the

crack-plane. In spite of this complication, the peak value of the dynamic stress intensity factor K
þ
IIIðtÞ in-

creases while the maximum K
�
IIIðtÞ decreases with increasing gradient parameter b0a.

Finally, the dynamic overshoot of the stress intensity factors for two selected orientation angles / ¼ 30�
and 60� is given in Table 6 and Fig. 15, versus the gradient parameter b0a. For / ¼ 60�, the dynamic
overshoot of the stress intensity factor at the crack-tip in the direction of increasing material constants

increases, while that at the crack-tip in the direction of decreasing material constants decreases with in-

creasing gradient parameter b0a. For / ¼ 30�, the dynamic overshoot of the stress intensity factor at the
Table 6

Dynamic overshoot of the stress intensity factors for / ¼ 30� and 60�

/ ¼ 30� Overshoot Kþ
III Overshoot K�

III / ¼ 60� Overshoot Kþ
III Overshoot K�

III

b0a ¼ 0:0 26.14% 26.14% b0a ¼ 0:0 26.14% 26.14%

b0a ¼ 0:5 28.94% 23.86% b0a ¼ 0:5 33.39% 23.84%

b0a ¼ 1:0 34.05% 23.48% b0a ¼ 1:0 43.60% 22.12%

b0a ¼ 1:5 42.55% 25.04% b0a ¼ 1:5 56.05% 19.81%

b0a ¼ 2:0 54.21% 27.46% b0a ¼ 2:0 70.01% 17.17%



K
III

K
III

K
III

K
III

0.0 0.5 1.0 1.5 2.0
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70

: φ=30 o

: φ=30 o

: φ=60 o

: φ=60 o

D
yn

am
ic

ov
er

-s
ho

ot
[%

]

β´a

Fig. 15. Dynamic overshoot of the stress intensity factors for Case III (/ ¼ 30� and 60�).
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crack-tip x1 ¼ þa has a similar behavior as for / ¼ 60�, while that at the crack-tip x1 ¼ �a is somewhat

complicated. In the latter case, the dynamic overshoot of the stress intensity factor may increase or decrease

with increasing gradient parameter b0a depending on the magnitude of b0a.
5. Conclusions

In this paper, transient dynamic crack analysis in a FGM is presented. A hypersingular time-domain

traction BIEM is applied for solving the initial-boundary value problem. The spatial variations of the

material parameters of the FGM are determined by an exponential law, which is able to describe both the

unidirectional and the bidirectional material gradation. Transient dynamic stress intensity factors for a
finite crack in an infinite FGM subjected to an impact anti-plane crack-face loading are computed nu-

merically. The present time-domain BIEM has the following special features and advantages:

• It avoids the use of an explicit expression of the time-domain Green�s functions, which are not available

for general FGM. In lieu of this, the corresponding Laplace-domain Green�s functions are required,

which can be expressed as Fourier integrals.

• No special regularization or integration techniques are needed for computing the arising hypersingular

Hadamard finite-part integral.
• The system matrix is symmetric and only a single spatial integral has to be computed numerically though

the application of a spatial Galerkin method.

• It is highly accurate and efficient for computing the transient dynamic stress intensity factors. Extensive

numerical tests show that the time-stepping scheme presented here is quite insensitive to the selected

time-steps, which is crucial in the conventional time-domain method using time-domain Green�s func-
tions.

From the numerical results obtained in this analysis, the following conclusions can be drawn:

• The material gradients in a FGM may have significant influences on the transient dynamic stress inten-

sity factors and their dynamic overshoot over the corresponding static stress intensity factors. This con-
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cerns both the peak value or the dynamic overshoot of the dynamic stress intensity factors and the time

instant at which the peak value arises.

• For the case with a material gradient parallel to the crack-plane (Case I) and compared to the corre-

sponding values for a homogenous material, the material gradient results in an increase of the peak dy-
namic stress intensity factor at the crack-tip in the direction of increasing material parameters, while a

decrease of the dynamic stress intensity factor at the crack-tip in the direction of decreasing material pa-

rameters. The same conclusion also applies for the dynamic overshoot of the stress intensity factors. The

dynamic stress intensity factor at the crack-tip in the direction of increasing material parameters is larger

than that at the crack-tip in the direction of decreasing material parameters.

• For a material gradient normal to the crack-plane (Case II) and for a small value of the material gradient

parameter, the maximum dynamic stress intensity factors increase with increasing material gradient pa-

rameter. For a large value of the material gradient parameter, however, a tangled situation and a more
pronounced oscillation in the dynamic stress intensity factors is induced. In the latter case, additional

local peak dynamic stress intensity factors with slowly decreasing amplitudes are observed. For small

gradient parameter, the dynamic overshoot of the stress intensity factors is insensitive to the material

gradient, whereas it increases with increasing material gradient for large gradient parameter.

• For material gradients parallel and normal to the crack-plane (Case III) as considered in this analysis for

a unidirectional material gradation with an arbitrarily oriented crack, both the crack orientation and the

material gradient may have considerable influences on the normalized dynamic stress intensity factors

and their dynamic overshoot over the corresponding static stress intensity factors. A maximum dynamic
overshoot of the stress intensity factor at the crack-tip in the direction of increasing material constants is

obtained for a crack orientation parallel to the direction of the material gradation, i.e., Case I of Fig. 1.

However, the corresponding dynamic overshoot of the stress intensity factor at the crack-tip in the

direction of decreasing material constants is the lowest in this case. For a crack orientation around

45� with respect to the direction of the material gradient, a tendency combining the effects induced by

a material gradient parallel/normal to the crack-plane, i.e., the effects in Cases I and II, is noted.
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